Radiation safety for users of neutron facilities

Alex Szakál
Wigner Research Centre for Physics
Neutron Spectroscopy Department
Contents

- History
- Radiation types
- Definition of activity and doses
- Risks of radiations
- Principles of radiation protection
- Protection strategies
- Rules at the Budapest Research Reactor
History

- 1895 – Wilhelm Röntgen discover the X-rays while experimenting with vacuum tubes
- 1896 – Becquerel discovers natural radioactivity in uranium containing salts
- 1897 – Thomson discovers the electrons
- 1898 – Marie and Pierre Curie isolates polonium and radium
- 1902 – Rutherford and Soody discover the chemical change of alpha and beta emitting materials
- 1911 – Rutherford suppose the existence of the nucleus
- 1914-1918 Röntgen automobiles in WW I.
- 1928 – Müller discovers that mutations can be induced by X-rays in flies
- 1928 – Establishment of the first organization for radiation safety (predecessor of ICRP: International Commmission of Radiation Protection)
- 1931 – Walter Boethe and Herbert Becker found a penetrating radiation when bombarding light elements with alpha particles. Originally thought as X-rays.
- 1932 – James Chadwick discovers the neutrons (beryllium bombarded with alpha particles from polonium)
History

- 1938 – Otto Hahn, Fritz Strassman and Lise Meitner discover the fission of nuclei
- 1939 – Leo Szilárd patents the nuclear chain reaction
- 1942 – Fermi starts Chicago Pile-1, the first critical system
- 1945 – Hiroshima, Nagasaki
- 1956 – First nuclear power station (Calder Hall, UK)
- 1956 – Establishment of International Atomic Energy Agency (IAEA)
- 1959 – Budapest Research Reactor went critical
- 1967 – ILL was founded
- 1979 – Accident in the Three Mile Island nuclear power station (marginal contamination released to the environment)
- 1986 – Chernobyl: due to the absence of containment high amount of radioactive isotopes was released
- 2011 – Fukushima
Radiation types

Different radiations in a cloud chamber:
X-ray and gamma-radiation

- Parts of the electromagnetic spectrum.
- Separation by energy or source:
 - X-rays: 1keV – 100 keV; emission from electrons outside the nucleus
 - Gamma-rays: E > 100 keV; emitted from the nucleus
- **X-rays** are generated when energetic electrons hit a metal target and slow down (X-ray tubes).
 - Bremsstrahlung: Continuous spectrum
 - Fluorescent radiation: an electron is kicked out from an inner shell and the hole is filled by an outer electron
Gamma radiation is emitted when an excited nucleus changes its energy level.

- **Characteristic energy**

\[
\frac{A}{Z} X^* \rightarrow \frac{A}{Z} X + \gamma
\]

Shielding:
Elements with high atomic number: Pb, W
Beta radiation

Beta decay: A neutron in the nucleus is transformed to a proton; an energetic electron and an antineutrino is released:

\[
\begin{align*}
^{A}_{Z}X & \xrightarrow{\beta^{-} - \text{bomlás}} ^{A}_{Z+1}X + \beta^{-} + \bar{\nu} + (\gamma) \\
\end{align*}
\]

Positive beta decay: A proton of a nucleus is transformed to a neutron; an energetic positron and a neutrino is released:

\[
\begin{align*}
^{A}_{Z}X & \xrightarrow{\beta^{+} - \text{bomlás}} ^{A}_{Z-1}X + \beta^{+} + \nu + (\gamma) \\
\end{align*}
\]

- Often, the nucleus remains in an excited state -> gamma emission!
- Spectrum is continuous because of the (anti)neutrino

Shielding:
- Short free path in condensed matter
- Shielding with low-Z metals e.g. Al (Pb generate Bremsstrahlung)
Alpha radiation

Alpha decay: Heavy elements decay by the emission of a ^4He nucleus

$$\begin{align*}
\frac{A}{Z} X & \rightarrow \frac{A-4}{Z-2} X + ^4\text{He}^{2+} + (\gamma) \\
\alpha-\text{bomlás} & \rightarrow \alpha-\text{bomlás}
\end{align*}$$

Shielding:
- Very short free path
- Thin condensed matter stops the alpha-particle e.g. a sheet of paper
Neutron radiation

Neutron decay: E.g. ^{13}Be decays by ejecting a neutron, but in practice, fission reactions are more common sources of neutron radiation.

Fission: Spontaneous or induced fission is possible

Spallation: A heavy nucleus emit neutrons after collision with high energy protons.

Shielding: Neutron adsorbing materials are: Cd, B, Gd, Li
- Additional shielding of the produced gamma radiation may be necessary
- Shielding of fast neutrons may need the use of hydrogen containing material to slow down the neutrons to thermal energy.
 - (Heavy)Concrete is a good material for neutrons and gamma photons
Activity

The strength of a source is described by its activity.

\[A = \frac{dN}{dt} \]

1 Becquerel [Bq] = 1 decay / second

Activity in the function of time:

\[A = A_0 e^{-\lambda t} \]

\[\lambda = \frac{\ln 2}{T_{1/2}} \]

Rule of thumb: Activity drops below 1% in 7 half lives
Measures of dose

Activity describe the source only, the various dose quantities can be connected to health effects.

Absorbed dose:

\[D = \frac{dE}{dm} \quad [\text{Gy}] \]

1 Gy = \frac{1 J}{1 \text{ kg}}

- Radiation type is not taken into account!

Equivalent dose: Takes into account the type of radiation because the efficiency for ionization is different

\[H_T = \sum_R w_R D_{T,R} \]

- Radiation weight factor
- Absorbed dose of radiation R, in tissue T
Measures of dose

<table>
<thead>
<tr>
<th>Radiation type and energy</th>
<th>Weight factor w_R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gamma photons, X-rays, electrons, muons</td>
<td>1</td>
</tr>
<tr>
<td>Neutrons: <1 MeV</td>
<td>$2.5+18.2\exp(-[\ln(E)]^2/6)$</td>
</tr>
<tr>
<td>1-50 MeV</td>
<td>$5+17\exp(-[\ln(2E)]^2/6)$</td>
</tr>
<tr>
<td>>50 MeV</td>
<td>$2.55+3.25\exp(-[\ln(0.04E)]^2/6)$</td>
</tr>
<tr>
<td>Protons</td>
<td>2</td>
</tr>
<tr>
<td>Alpha particles, fission products, heavy nuclei</td>
<td>20</td>
</tr>
</tbody>
</table>

Equivalent dose can be used if the whole body is irradiated!
The effective dose has to be used if the organs are not uniformly irradiated and the damage has to be described by one number.

\[E = \sum T w_T H_T [Sv] \]

<table>
<thead>
<tr>
<th>Organ</th>
<th>(w_T)</th>
<th>Organ</th>
<th>(w_T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gonads</td>
<td>0.08</td>
<td>Oesophagus</td>
<td>0.04</td>
</tr>
<tr>
<td>Red Bone Marrow</td>
<td>0.12</td>
<td>Thyroid</td>
<td>0.04</td>
</tr>
<tr>
<td>Colon</td>
<td>0.12</td>
<td>Skin</td>
<td>0.01</td>
</tr>
<tr>
<td>Lung</td>
<td>0.12</td>
<td>Bone surface</td>
<td>0.01</td>
</tr>
<tr>
<td>Stomach</td>
<td>0.12</td>
<td>Salivary glands</td>
<td>0.01</td>
</tr>
<tr>
<td>Brests</td>
<td>0.12</td>
<td>Brain</td>
<td>0.01</td>
</tr>
<tr>
<td>Bladder</td>
<td>0.04</td>
<td>Remainder of body</td>
<td>0.12</td>
</tr>
<tr>
<td>Liver</td>
<td>0.04</td>
<td>TOTAL</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Equals to the effective dose distributed uniformly which has the same risks as the risk of the irradiation of tissues.
Effects of ionizing radiations

- Ionizing radiation can be found everywhere in nature.
- The body has mechanisms to repair the radiation damage.
- Ionizing radiation transfer energy to the tissues like radiating heat but due to the high energy concentration chemical changes are possible
- Ionization, production of free radicals
- Damage of the DNA molecule
Risks of radiations

Effects of radiations can be divided into two categories by the probability of effects:

Deterministic effects:
- Significant number of cells is killed leading to functional loss of an organ
- Functional changes in nervous system, digestive system, blood system

Connection with dose:
- Cells can be replaced to some extent → threshold dose
- After exceeding the threshold, the severity of consequences increase
- When dose limits are exceeded considerably
- 50% lethality in 30 days: 3-5 Gy (whole body)
- Used in radiotherapy
Risks of radiations

Stochastic effects:
- Changes in the DNA of one cell
- Cancer if the repair mechanisms of the body fail to detect and kill the cell

Connection with dose:
- Difficult to measure the effects of low doses
- Consensus is that no threshold exist
- The probability of the effect depends linearly on dose, the severity not
- Risk of cancer: 5.5%/Sv, risk of heritable changes: 0.2%/Sv

![Diagram showing the relationship between radiation dose and excess probability of cancer](chart.png)
Natural and artificial background

Sources:
- Earth (uranium, thorium)
- Cosmic radiation
- Internal (mainly 40-K)
- Artificial

Artificial sources: 0.6 mSv/year world average, in developed countries 3 mSv can be reached!!
Principles of radiation protection

3 principles: justification, optimization, limitation

Principle of justification: The application has to have more benefit for the exposed individual or the society than the detriment of the exposition and all costs, including radiation protection. Example: bone X-ray

Principle of optimization: If the use of ionizing radiation is justified then the excess dose due to the application and the release of radioactive materials has to be reduced by applying all reasonable methods.

The dose is optimized if: As Low As Reasonably Achievable (ALARA)

Principle of limitation: Effective dose of individuals must remain below the recommended dose limits (but ALARA has to be applied):

- Public: 1 mSv
- Radiation workers: 20 mSv averaged in 5 years but not exceeding 50 mSv in any one year period

Exception: radiotherapy and emergency situations.
Protection

TIME
- Dose is proportional to time of exposition
- Rehearsal with inactive sample
- Only those activities are allowed which can not be bone elsewhere
- Cheap way but hard to gain orders of magnitudes

DISTANCE
- Dose rate $\sim 1/r^2$ for a point source
- Pair of pincers, manipulators
- Forbidden to hold sources in hand

SHIELDING
- Must be designed for the radiation characteristics (type, intensity)
- Neutrons: sandwich-type
Rules at Budapest Research Reactor

General:
● The safety of the experiments is the responsibility of the leader of the experiment.
● Visitors are obliged to follow the instructions of the supervisor.
● When leaving the reactor hall and the reactor building contamination has to be checked with the installed instruments at the gates.

Clothing:
● Trousers, closed shoes!
● Lab coat and overshoes in the Reactor Hall.

Open/close the beam ports:
● Red, white and green lamps show the status of beam shutters.
● Beams can be opened after permission is given from the radiation safety group
● GREEN: shutter closed
● GREEN and WHITE: shutter closed permission is given
● WHITE: opening of the beam is in progress
● RED: beam opened, entry is forbidden

Activation:
● Samples can be activated in the neutron beam.
● Usually decay is fast
● Check with GM counter, call radiation safety group if unsure.
● Always check samples before taking them home!!
Thank you for your attention!